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Abstract—A study of the natural vibration of a continuous Timoshenko curved beam on a
Pasternak-type foundation is presented. The dynamic stiffness matrix of a curved member of
constant section is derived. An example of a two-span curved beam is given to illustrate the
application of the proposed method and to show the effects of flexural and torsional rotary inertia,
shear deformation, central angle of the arc, contact area between the beam and foundation, and
the foundation constants on the natural frequencies of the beam.

. INTRODUCTION

The problem of beams on elastic foundations occupies an important place in modern
structural and foundation engineering. The static case has been studied extensively, and the
subject is covered in great depth by Volterra (1952, 1953) and Panayotounakas and
Theocaris (1979). For the dynamic case, most works have been done within the scope of
elementary Bernoulli-Euler beams on elastic foundations. Usually, the subgrade is replaced
either by Winkler foundation, (Hetenyi, 1966) or by a homogeneous, isotropic semi-infinite
elastic continuum (Richart ef al., 1970). However, Kerr (1964) has shown that there is a
large class of foundation materials occurring in engineering practice the behavior of which
cannot be represented by these two models. In an attempt to find a physically close and
mathematically simple representation of an elastic foundation for these materials, Pasternak
and Izdat (1954) proposed a foundation model consisting of a Winkler foundation with
shear interaction. This may be accomplished by connecting the ends of the vertical springs
to a beam consisting of the compressible vertical elements, which deforms only the transverse
shear. Rades (1970) studied the steady-state response of a beam on a Pasternak-type
foundation. His results have shown that, for the bending moments, the responses obtained
when using the Pasternak foundation model are totally different from those for the Winkler
model. The insufficiency of the Winkler model in his study is emphasized.

The Bernoulli-Euler theory of flexural vibrations of beams is adequate for relatively
long, slender beams at lower modes of vibration. For beams having large cross-sectional
dimensions in comparison to their lengths, and for beams in which higher modes are
required, the Timoshenko theory gives a better approximation to the true behaviour of a
beam (Huang, 1961; Issa, 1988). The application of the Timoshenko theory to beam
vibration has been considered by Issa et al. (1987). They presented the frequency equations
and normal modes of free vibrations for curved beams. Issa (1988) investigated the
vibrations of continuous Timoshenko curved beams on a Winkler foundation. Loura and
Gutierrez (1985) presented an analytical solution to the problem of vibrating nonuniform
plates on an elastic foundation ; free and forced vibration were studied.

In the present paper, the effects of Pasternak foundations on natural frequencies of
finite Timoshenko curved beams are studied. The governing system of partial differential
equations is presented first. The general solution of these equations is then obtained and
the dynamic stiffness matrix is derived. Numerical results are given to show the effects of
flexural and torsional rotary inertia, shear deformation, central angle of the arc, contact
area between the beam and foundation, and the foundation constants on the natural
frequencies of the beam. The mass of the foundation will, apparently, have an effect on
natural frequencies. This effect has not been considered in the work presented here.
However, a study of this effect is underway.
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2. DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

The coupled differential equations for transverse vibrations of Timoshenko curved
beams on Winkler foundations take the forms as given by Issa (1988):
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in which E = modulus of elasticity, G = modulus of rigidity, J = torsional constant,
K = numerical shape factor of the cross-section, / = moment of inertia of the cross-section,
A = cross-sectional area, y = mass per unit volume, /» = polar moment of inertia of cross-
sectional area, ¢ = bending slope of the cross-sectional area, v = vertical displacement of
the center line of the curved beams, § = angle of twist of the beam cross-section, R = radius
of curvature of the curved beam, v = stiffness factor, P, = foundation vertical reaction per
unit length, ¢, = foundation torsional reaction and 1 = time.
The general form for a Pasternak foundation in the radial coordinate case has been
derived as:
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where k, = Winkler foundation modulus, G, = shear foundation modulus and ¢ = width
of the contact area between the beam and the foundation. With P,and ¢, expressed by eqns
(4) and (5), egns (2) and (3) become
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where i =/~ 1, @ = angular frequency, ¥ = normal function of v, ® = normal function
of ¢, ¥ = normal function of . When the common factor e’ is omitted, eqns (1) and
(6)~(7) reduce to
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By manipulation, eqns (11)-(13) can be decoupled and the following linear differential
equations for V, ® and ¥ result:

VI A VY +A,V"+ A4V =0 (15)
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LYY+ A LY + A, L¥Y"+ A, LY = 0. an

The primes for ¥V, ® and ¥ represent differentiation with respect to 0. The coefficients 4,
A, and A; are as given in the Appendix.
The solution of eqns (15)-(17) may be expressed as:

V(6) = zﬂl C, e’ (18)
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LY¥(6) = i. E, e&n’ (20)

where C,, D, and E, are constants to be determined from the boundary conditions, and 4,
(n=1,2,...,6) are the roots of the characteristic equation
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A A i+ A7+ A4, =0. 2n
The relation between D,, E, and C, can be obtained from eqns (11) and (i12). These

relationships can be written as
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3. DYNAMIC STIFFNESS MATRIX

Figure | shows a horizontally circular curved member of constant cross-section, resting
on Pasternak foundations, and subjected to harmonic displacements, linear and rotational,

at the two ends a and b,

er' vu

Fig. 1. Positive end displacements and forces of a circular curved member on Pasternak foundations
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The end displacements and forces of the curved member take the form as implemented
by Issa (1988):
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where m,, t, and g, are given in Issa (1988).
Eliminating [X] from eqns (29) and (30) yields
{F} =[S,o){0} (31

where [So], the dynamic stiffness matrix for a horizontally circular curved member resting
on Pasternak foundations, is given by
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4. NUMERICAL EXAMPLE

S5 S 83 Sa Sis o S =f_,£[B°][A°]_I'

(32)

A symmetrical circular curved beam resting on Pasternak-type foundations and having

rigid nontwisting supports as shown in Fig. 2 is analyzed for natural frequencies.

The boundary conditions are
Wy=Ws=Y¥:=0, Va=Vy=Vc=0,
and the conditions of dynamic equilibrium at A, B and C give
Muyg =0, Mgya+Mpc=0, M =0.

Since the beam has two identical spans,

[Aolas = [dolec = [4o]. [Bolas = [Bolec = [Bo}.  [Soluz = [Solsc = [So].

Thus eqgns (31), (32) and (33) give

Mug = S, 1 Pa+S5,4Pp, Mps =S5, Pa+ 5445,
Mpc = 8,05+ 5,4Pc, Mcp = S5, Pp+S44Dc.

(33)

(34)

(35)

(36)

Substituting eqns (36) into eqns (34) yields a system of simultaneous equations in the

following matrix form:

’ ¥ I’

Va Ve Ve

Fig. 2. A two-span circular curved beam on Pasternak foundations.
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Equating the determinant of the stiffness matrix in eqn (37) to zero gives the frequency
equation

NT Sia 0
Sa Su+S) Su|=0 (38)
0 S S4a

For a given curved beam, with «, L, r, 5, 4, c and w known, the frequency characteristics
can be found from eqn (38). In order to show the effects of central angle, shear deformation,
the foundation constants and rotary inertia with respect to flexure and torsion on the
natural frequencies of the beam, the value of K is assumed to be 0.85 for rectangular beams
for which: depth = ¢, breadth = b, ¢ = 2b, Poisson’s ratio = 0.2, E =200 t cm~? and
G = 83.4 t cm~2. For this section the value of J is given by Huang (1961) as J = 0.0286 ¢*.
Thus ¥ = GJ/EI = 0.286, a = 1.118 r, s = 1.685 r. The ratio of the width of the contact
area between the beam and the foundation, ¢, to the length of the beam, L, is taken as
C, = ¢/L = 0.08; the foundation constants are taken as w = 20, z = 10.

Consider r = 0.04 ; then the values of b for & = 0° and a = 40° for the first five modes,
obtained from eqn (38), are respectively

b, = 11.11,15.49, 35.98, 42.89, 72.56,
b =10.08, 14.67, 34.69,41.81,71.18.

Let w, be the frequencies of a straight beam (« = 0). Since b/b, = w/w,, it follows that
w/w, = 0.907, 0.947, 0.964, 0.975, 0.981.

The resuits of w/w, versus « for r = 0.04 for the first five modes are shown in Fig. 3.
Curves given in Fig. 4 show the effects of shear deformation and rotary inertia with respect
to flexure and torsion on the natural frequencies. Curves given in Fig. 5 show the effect of
Pasternak shear modulus, G, on the natural frequencies of curved beams.

Curves given in Fig. 6 show the effect of C, on the natural frequencies of curved beams.

w/w,

0.6 1 1 1 1 1 1 1 1 !
[+] 10 20 30 40 S0 60 70 80 90

Central angle (a)

Fig. 3. Effect of central angle & upon the natural frequencies of a two-span curved beam on Pasternak
foundations (w = 20, z = 10).
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Fig. 4. Corrections in natural frequencies of a two-span curved heam on Pasternak foundations
owing 10 shear deformation and retary inertia with respect to flexure and tarsion {z = 607, w = 20,
z =100
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Fig. 5. Effect of Pasternak shear modulus, G, on the natural frequencies (v = 20).
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Fig. & Effect of width of the contact area between the beam and the foundations an the natural
frequencies of two-span curved beam on Pasternak foundations (w = 20, = = [0).

5. CONCLUSIONS

The dynamic stiffuess matrix formulation for circular curved members of constant
cross-section resting on Pasternak-type foundations, including the effects of flexural and
torsional] rotary inertia and shear deformation, has been presented for the determination
of the natural frequencics of continuous curved beams. The application of the proposed
method has been illustrated in the example of a two-span curved beam resting on Pasternak
foundations and undergoing out-of-plane vibrations. Among the most important results of



Free vibrations of curved beams 1251
this investigation one may list the following:

(1) The natural frequencies decrease as the central angle of the arc increases, and this
effect becomes significant for lower modes. This is explained by the fact that the beam
becomes more flexible as the central angle of the arc increases.

(2) The natural frequencies of curved beams increase as the Pasternak shear modulus
increases. This effect is more pronounced for the lower modes and smaller values of the
central angle.

(3) The natural frequencies of curved beams on Pasternak foundations are higher than
those of curved beams on Winkler foundations. This reveals the effect of shear interactions
in the Pasternak model.

(4) The natural frequencies increase as the width of the contact area between the beam
and the foundation increases. This effect becomes more significant for the lower modes and
for larger values of the central angle.
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APPENDIX
Ay = (Acg +Aw + 4p)/(1 +X)
A; = (Beg+ Bw + Bp)/(1 +x)
A; = (Ceg+Cw+Cp)/(1 +x)

where
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